Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.916
Filtrar
1.
Funct Integr Genomics ; 24(2): 76, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38656411

RESUMEN

Stroke is a leading cause of death and disability, and genetic risk factors play a significant role in its development. Unfortunately, effective therapies for stroke are currently limited. Early detection and diagnosis are critical for improving outcomes and developing new treatment strategies. In this study, we aimed to identify potential biomarkers and effective prevention and treatment strategies for stroke by conducting transcriptome and single-cell analyses. Our analysis included screening for biomarkers, functional enrichment analysis, immune infiltration, cell-cell communication, and single-cell metabolism. Through differential expression analysis, enrichment analysis, and protein-protein interaction (PPI) network construction, we identified HIST2H2AC as a potential biomarker for stroke. Our study also highlighted the diagnostic role of HIST2H2AC in stroke, its relationship with immune cells in the stroke environment, and our improved understanding of metabolic pathways after stroke. Overall, our research provided important insights into the pathogenesis of stroke, including potential biomarkers and treatment strategies that can be explored further to improve outcomes for stroke patients.


Asunto(s)
Análisis de la Célula Individual , Accidente Cerebrovascular , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Humanos , Transcriptoma , Biomarcadores/metabolismo , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica
2.
Mol Biol Rep ; 51(1): 576, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664314

RESUMEN

BACKGROUND: Colorectal cancer (CRC) ranks as the third most commonly diagnosed cancer in both females and males, underscoring the need for the identification of effective biomarkers. METHODS AND RESULTS: We assessed the expression levels of ribosomal proteins (RPs) at both mRNA and protein levels. Subsequently, leveraging the STRING database, we constructed a protein-protein interaction network and identified hub genes. The co-expression network of differentially expressed genes associated with CRC and their target hub RPs was constructed using the weighted gene co-expression network analysis algorithm. Gene ontology and molecular signatures database were conducted to gain insights into the biological roles of genes associated with the identified module. To confirm the results, the expression level of the candidate genes in the CRC samples compared to the adjacent healthy was evaluated by the RT-qPCR method. Our findings indicated that the genes related to RPs were predominantly enriched in biological processes associated with Myc Targets, Oxidative Phosphorylation, and cell proliferation. Also, results demonstrated that elevated levels of GRWD1, MCM5, IMP4, and RABEPK that related to RPs were associated with poor prognostic outcomes for CRC patients. Notably, IMP4 and RABEPK exhibited higher diagnostic value. Moreover, the expression of IMP4 and RABEPK showed a significant association with drug resistance using cancer cell line encyclopedia and genomics of drug sensitivity in cancer databases. Also, the results showed that the expression level of IMP4 and RABEPK in cancerous samples was significantly higher compared to the adjacent healthy ones. CONCLUSION: The general results of this study have shown that many genes related to RPs are increased in cancer and could be associated with the death rate of patients. We also highlighted the therapeutic and prognostic potentials of RPs genes in CRC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Mapas de Interacción de Proteínas , Proteínas Ribosómicas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Mapas de Interacción de Proteínas/genética , Regulación Neoplásica de la Expresión Génica/genética , Femenino , Masculino , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Línea Celular Tumoral
3.
BMC Bioinformatics ; 25(1): 157, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643108

RESUMEN

BACKGROUND: The identification of essential proteins can help in understanding the minimum requirements for cell survival and development to discover drug targets and prevent disease. Nowadays, node ranking methods are a common way to identify essential proteins, but the poor data quality of the underlying PIN has somewhat hindered the identification accuracy of essential proteins for these methods in the PIN. Therefore, researchers constructed refinement networks by considering certain biological properties of interacting protein pairs to improve the performance of node ranking methods in the PIN. Studies show that proteins in a complex are more likely to be essential than proteins not present in the complex. However, the modularity is usually ignored for the refinement methods of the PINs. METHODS: Based on this, we proposed a network refinement method based on module discovery and biological information. The idea is, first, to extract the maximal connected subgraph in the PIN, and to divide it into different modules by using Fast-unfolding algorithm; then, to detect critical modules according to the orthologous information, subcellular localization information and topology information within each module; finally, to construct a more refined network (CM-PIN) by using the identified critical modules. RESULTS: To evaluate the effectiveness of the proposed method, we used 12 typical node ranking methods (LAC, DC, DMNC, NC, TP, LID, CC, BC, PR, LR, PeC, WDC) to compare the overall performance of the CM-PIN with those on the S-PIN, D-PIN and RD-PIN. The experimental results showed that the CM-PIN was optimal in terms of the identification number of essential proteins, precision-recall curve, Jackknifing method and other criteria, and can help to identify essential proteins more accurately.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Mapeo de Interacción de Proteínas/métodos , Algoritmos , Mapas de Interacción de Proteínas , Biología Computacional/métodos
4.
Front Immunol ; 15: 1387316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660305

RESUMEN

Background: Skin Cutaneous Melanoma (SKCM) incidence is continually increasing, with chemotherapy and immunotherapy being among the most common cancer treatment modalities. This study aims to identify novel biomarkers for chemotherapy and immunotherapy response in SKCM and explore their association with oxidative stress. Methods: Utilizing TCGA-SKCM RNA-seq data, we employed Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) networks to identify six core genes. Gene co-expression analysis and immune-related analysis were conducted, and specific markers associated with oxidative stress were identified using Gene Set Variation Analysis (GSVA). Single-cell analysis revealed the expression patterns of Oxidative Stress-Associated Genes (OSAG) in the tumor microenvironment. TIDE analysis was employed to explore the association between immune therapy response and OSAG, while CIBERSORT was used to analyze the tumor immune microenvironment. The BEST database demonstrated the impact of the Oxidative Stress signaling pathway on chemotherapy drug resistance. Immunohistochemical staining and ROC curve evaluation were performed to assess the protein expression levels of core genes in SKCM and normal samples, with survival analysis utilized to determine their diagnostic value. Results: We identified six central genes associated with SKCM metastasis, among which the expression of DSC2 and DSC3 involved in the oxidative stress pathway was closely related to immune cell infiltration. DSC2 influenced drug resistance in SKMC patients. Furthermore, downregulation of DSC2 and DSC3 expression enhanced the response of SKCM patients to immunotherapy. Conclusion: This study identified two Oxidative Stress-Associated genes as novel biomarkers for SKCM. Additionally, targeting the oxidative stress pathway may serve as a new strategy in clinical practice to enhance SKCM chemotherapy and sensitivity.


Asunto(s)
Biomarcadores de Tumor , Melanoma , Estrés Oxidativo , Neoplasias Cutáneas , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Melanoma/inmunología , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , Pronóstico , 60468 , Regulación Neoplásica de la Expresión Génica , Mapas de Interacción de Proteínas , Femenino , Masculino , Perfilación de la Expresión Génica , Transcriptoma , Resistencia a Antineoplásicos/genética , Inmunoterapia/métodos , Persona de Mediana Edad , Redes Reguladoras de Genes
5.
Front Immunol ; 15: 1339647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660311

RESUMEN

Introduction: Over the past decades, immune dysregulation has been consistently demonstrated being common charactoristics of endometriosis (EM) and Inflammatory Bowel Disease (IBD) in numerous studies. However, the underlying pathological mechanisms remain unknown. In this study, bioinformatics techniques were used to screen large-scale gene expression data for plausible correlations at the molecular level in order to identify common pathogenic pathways between EM and IBD. Methods: Based on the EM transcriptomic datasets GSE7305 and GSE23339, as well as the IBD transcriptomic datasets GSE87466 and GSE126124, differential gene analysis was performed using the limma package in the R environment. Co-expressed differentially expressed genes were identified, and a protein-protein interaction (PPI) network for the differentially expressed genes was constructed using the 11.5 version of the STRING database. The MCODE tool in Cytoscape facilitated filtering out protein interaction subnetworks. Key genes in the PPI network were identified through two topological analysis algorithms (MCC and Degree) from the CytoHubba plugin. Upset was used for visualization of these key genes. The diagnostic value of gene expression levels for these key genes was assessed using the Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) The CIBERSORT algorithm determined the infiltration status of 22 immune cell subtypes, exploring differences between EM and IBD patients in both control and disease groups. Finally, different gene expression trends shared by EM and IBD were input into CMap to identify small molecule compounds with potential therapeutic effects. Results: 113 differentially expressed genes (DEGs) that were co-expressed in EM and IBD have been identified, comprising 28 down-regulated genes and 86 up-regulated genes. The co-expression differential gene of EM and IBD in the functional enrichment analyses focused on immune response activation, circulating immunoglobulin-mediated humoral immune response and humoral immune response. Five hub genes (SERPING1、VCAM1、CLU、C3、CD55) were identified through the Protein-protein Interaction network and MCODE.High Area Under the Curve (AUC) values of Receiver Operating Characteristic (ROC) curves for 5hub genes indicate the predictive ability for disease occurrence.These hub genes could be used as potential biomarkers for the development of EM and IBD. Furthermore, the CMap database identified a total of 9 small molecule compounds (TTNPB、CAY-10577、PD-0325901 etc.) targeting therapeutic genes for EM and IBD. Discussion: Our research revealed common pathogenic mechanisms between EM and IBD, particularly emphasizing immune regulation and cell signalling, indicating the significance of immune factors in the occurence and progression of both diseases. By elucidating shared mechanisms, our study provides novel avenues for the prevention and treatment of EM and IBD.


Asunto(s)
Endometriosis , Enfermedades Inflamatorias del Intestino , Mapas de Interacción de Proteínas , Transcriptoma , Humanos , Endometriosis/inmunología , Endometriosis/genética , Femenino , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Redes Reguladoras de Genes , Biomarcadores , Regulación de la Expresión Génica
6.
Front Endocrinol (Lausanne) ; 15: 1330704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660519

RESUMEN

Background: Both the mother and the infant are negatively impacted by macrosomia. Macrosomia is three times as common in hyperglycemic mothers as in normal mothers. This study sought to determine why hyperglycemic mothers experienced higher macrosomia. Methods: Hematoxylin and Eosin staining was used to detect the placental structure of normal mother(NN), mothers who gave birth to macrosomia(NM), and mothers who gave birth to macrosomia and had hyperglycemia (DM). The gene expressions of different groups were detected by RNA-seq. The differentially expressed genes (DEGs) were screened with DESeq2 R software and verified by qRT-PCR. The STRING database was used to build protein-protein interaction networks of DEGs. The Cytoscape was used to screen the Hub genes of the different group. Results: The NN group's placental weight differed significantly from that of the other groups. The structure of NN group's placenta is different from that of the other group, too. 614 and 3207 DEGs of NM and DM, respectively, were examined in comparison to the NN group. Additionally, 394 DEGs of DM were examined in comparison to NM. qRT-PCR verified the results of RNA-seq. Nucleolar stress appears to be an important factor in macrosomia, according on the results of KEGG and GO analyses. The results revealed 74 overlapped DEGs that acted as links between hyperglycemia and macrosomia, and 10 of these, known as Hub genes, were key players in this process. Additionally, this analysis believes that due of their close connections, non-overlapping Hubs shouldn't be discounted. Conclusion: In diabetic mother, ten Hub genes (RPL36, RPS29, RPL8 and so on) are key factors in the increased macrosomia in hyperglycemia. Hyperglycemia and macrosomia are linked by 74 overlapping DEGs. Additionally, this approach contends that non-overlapping Hubs shouldn't be ignored because of their tight relationships.


Asunto(s)
Diabetes Gestacional , Macrosomía Fetal , RNA-Seq , Humanos , Embarazo , Femenino , Macrosomía Fetal/genética , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Adulto , Placenta/metabolismo , Placenta/patología , Mapas de Interacción de Proteínas , Hiperglucemia/genética , Hiperglucemia/metabolismo , Perfilación de la Expresión Génica , Recién Nacido
7.
Sci Rep ; 14(1): 9166, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644410

RESUMEN

Rheumatoid arthritis (RA) is a persistent autoimmune condition characterized by synovitis and joint damage. Recent findings suggest a potential link to abnormal lactate metabolism. This study aims to identify lactate metabolism-related genes (LMRGs) in RA and investigate their correlation with the molecular mechanisms of RA immunity. Data on the gene expression profiles of RA synovial tissue samples were acquired from the gene expression omnibus (GEO) database. The RA database was acquired by obtaining the common LMRDEGs, and selecting the gene collection through an SVM model. Conducting the functional enrichment analysis, followed by immuno-infiltration analysis and protein-protein interaction networks. The results revealed that as possible markers associated with lactate metabolism in RA, KCNN4 and SLC25A4 may be involved in regulating macrophage function in the immune response to RA, whereas GATA2 is involved in the immune mechanism of DC cells. In conclusion, this study utilized bioinformatics analysis and machine learning to identify biomarkers associated with lactate metabolism in RA and examined their relationship with immune cell infiltration. These findings offer novel perspectives on potential diagnostic and therapeutic targets for RA.


Asunto(s)
Artritis Reumatoide , Biología Computacional , Ácido Láctico , Aprendizaje Automático , Artritis Reumatoide/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Humanos , Biología Computacional/métodos , Ácido Láctico/metabolismo , Mapas de Interacción de Proteínas , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
8.
Sci Rep ; 14(1): 9199, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649399

RESUMEN

The distinctive nature of cancer as a disease prompts an exploration of the special characteristics the genes implicated in cancer exhibit. The identification of cancer-associated genes and their characteristics is crucial to further our understanding of this disease and enhanced likelihood of therapeutic drug targets success. However, the rate at which cancer genes are being identified experimentally is slow. Applying predictive analysis techniques, through the building of accurate machine learning models, is potentially a useful approach in enhancing the identification rate of these genes and their characteristics. Here, we investigated gene essentiality scores and found that they tend to be higher for cancer-associated genes compared to other protein-coding human genes. We built a dataset of extended gene properties linked to essentiality and used it to train a machine-learning model; this model reached 89% accuracy and > 0.85 for the Area Under Curve (AUC). The model showed that essentiality, evolutionary-related properties, and properties arising from protein-protein interaction networks are particularly effective in predicting cancer-associated genes. We were able to use the model to identify potential candidate genes that have not been previously linked to cancer. Prioritising genes that score highly by our methods could aid scientists in their cancer genes research.


Asunto(s)
Genes Esenciales , Aprendizaje Automático , Neoplasias , Humanos , Neoplasias/genética , Mapas de Interacción de Proteínas/genética , Evolución Molecular , Biología Computacional/métodos
9.
BMC Genomics ; 25(1): 395, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649810

RESUMEN

The testes are the organs of gamete production and testosterone synthesis. Up to date, no model system is available for mammalian testicular development, and only few studies have characterized the mouse testis transcriptome from no more than three postnatal ages. To describe the transcriptome landscape of the developing mouse testis and identify the potential molecular mechanisms underlying testis maturation, we examined multiple RNA-seq data of mouse testes from 3-week-old (puberty) to 11-week-old (adult). Sperm cells appeared as expected in 5-week-old mouse testis, suggesting the proper sample collection. The principal components analysis revealed the genes from 3w to 4w clustered away from other timepoints, indicating they may be the important nodes for testicular development. The pairwise comparisons at two adjacent timepoints identified 7,612 differentially expressed genes (DEGs), resulting in 58 unique mRNA expression patterns. Enrichment analysis identified functions in tissue morphogenesis (3-4w), regulation of peptidase activity (4-5w), spermatogenesis (7-8w), and antigen processing (10-11w), suggesting distinct functions in different developmental periods. 50 hub genes and 10 gene cluster modules were identified in the testis maturation process by protein-protein interaction (PPI) network analysis, and the miRNA-lncRNA-mRNA, miRNA-circRNA-mRNA and miRNA-circRNA-lncRNA-mRNA competing endogenous RNA (ceRNA) networks were constructed. The results suggest that testis maturation is a complex developmental process modulated by various molecules, and that some potential RNA-RNA interactions may be involved in specific developmental stages. In summary, this study provides an update on the molecular basis of testis development, which may help to understand the molecular mechanisms of mouse testis development and provide guidance for mouse reproduction.


Asunto(s)
Perfilación de la Expresión Génica , Testículo , Animales , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Ratones , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , MicroARNs/genética , MicroARNs/metabolismo
10.
J Cell Mol Med ; 28(8): e18294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652109

RESUMEN

Forkhead box protein 1 (FOXP1) serves as a tumour promoter or suppressor depending on different cancers, but its effect in oesophageal squamous cell carcinoma has not been fully elucidated. This study investigated the role of FOXP1 in oesophageal squamous cell carcinoma through bioinformatics analysis and experimental verification. We determined through public databases that FOXP1 expresses low in oesophageal squamous cell carcinoma compared with normal tissues, while high expression of FOXP1 indicates a better prognosis. We identified potential target genes regulated by FOXP1, and explored the potential biological processes and signalling pathways involved in FOXP1 in oesophageal squamous cell carcinoma through GO and KEGG enrichment, gene co-expression analysis, and protein interaction network construction. We also analysed the correlation between FOXP1 and tumour immune infiltration levels. We further validated the inhibitory effect of FOXP1 on the proliferation of oesophageal squamous cell carcinoma cells through CCK-8, colony formation and subcutaneous tumour formation assays. This study revealed the anticarcinogenic effect of FOXP1 in oesophageal squamous cell carcinoma, which may serve as a novel biological target for the treatment of tumour.


Asunto(s)
Proliferación Celular , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Factores de Transcripción Forkhead , Regulación Neoplásica de la Expresión Génica , Proteínas Represoras , Humanos , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Línea Celular Tumoral , Animales , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Biología Computacional/métodos , Ratones , Pronóstico , Mapas de Interacción de Proteínas/genética , Transducción de Señal , Redes Reguladoras de Genes , Ratones Desnudos
11.
Neurosci Lett ; 828: 137764, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582325

RESUMEN

BACKGROUND: Ataxia Telangiectasia (AT) is a genetic disorder characterized by compromised DNA repair, cerebellar degeneration, and immune dysfunction. Understanding the molecular mechanisms driving AT pathology is crucial for developing targeted therapies. METHODS: In this study, we conducted a comprehensive analysis to elucidate the molecular mechanisms underlying AT pathology. Using publicly available RNA-seq datasets comparing control and AT samples, we employed in silico transcriptomics to identify potential genes and pathways. We performed differential gene expression analysis with DESeq2 to reveal dysregulated genes associated with AT. Additionally, we constructed a Protein-Protein Interaction (PPI) network to explore the interactions between proteins implicated in AT. RESULTS: The network analysis identified hub genes, including TYROBP and PCP2, crucial in immune regulation and cerebellar function, respectively. Furthermore, pathway enrichment analysis unveiled dysregulated pathways linked to AT pathology, providing insights into disease progression. CONCLUSION: Our integrated approach offers a holistic understanding of the complex molecular landscape of AT and identifies potential targets for therapeutic intervention. By combining transcriptomic analysis with network-based methods, we provide valuable insights into the underlying mechanisms of AT pathogenesis.


Asunto(s)
Ataxia Telangiectasia , Enfermedades Cerebelosas , Humanos , Enfermedades Neuroinflamatorias , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos
12.
BMC Genomics ; 25(Suppl 1): 401, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658824

RESUMEN

BACKGROUND: Most of the important biological mechanisms and functions of transmembrane proteins (TMPs) are realized through their interactions with non-transmembrane proteins(nonTMPs). The interactions between TMPs and nonTMPs in cells play vital roles in intracellular signaling, energy metabolism, investigating membrane-crossing mechanisms, correlations between disease and drugs. RESULTS: Despite the importance of TMP-nonTMP interactions, the study of them remains in the wet experimental stage, lacking specific and comprehensive studies in the field of bioinformatics. To fill this gap, we performed a comprehensive statistical analysis of known TMP-nonTMP interactions and constructed a deep learning-based predictor to identify potential interactions. The statistical analysis describes known TMP-nonTMP interactions from various perspectives, such as distributions of species and protein families, enrichment of GO and KEGG pathways, as well as hub proteins and subnetwork modules in the PPI network. The predictor implemented by an end-to-end deep learning model can identify potential interactions from protein primary sequence information. The experimental results over the independent validation demonstrated considerable prediction performance with an MCC of 0.541. CONCLUSIONS: To our knowledge, we were the first to focus on TMP-nonTMP interactions. We comprehensively analyzed them using bioinformatics methods and predicted them via deep learning-based solely on their sequence. This research completes a key link in the protein network, benefits the understanding of protein functions, and helps in pathogenesis studies of diseases and associated drug development.


Asunto(s)
Biología Computacional , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Biología Computacional/métodos , Aprendizaje Profundo , Humanos , Mapas de Interacción de Proteínas
13.
Hum Genomics ; 18(1): 43, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659056

RESUMEN

OBJECTIVE: Myasthenia gravis (MG) is a complex autoimmune disease affecting the neuromuscular junction with limited drug options, but the field of MG treatment recently benefits from novel biological agents. We performed a drug-targeted Mendelian randomization (MR) study to identify novel therapeutic targets of MG. METHODS: Cis-expression quantitative loci (cis-eQTL), which proxy expression levels for 2176 druggable genes, were used for MR analysis. Causal relationships between genes and disease, identified by eQTL MR analysis, were verified by comprehensive sensitivity, colocalization, and protein quantitative loci (pQTL) MR analyses. The protein-protein interaction (PPI) analysis was also performed to extend targets, followed by enzyme-linked immunosorbent assay (ELISA) to explore the serum level of drug targets in MG patients. A phenome-wide MR analysis was then performed to assess side effects with a clinical trial review assessing druggability. RESULTS: The eQTL MR analysis has identified eight potential targets for MG, one for early-onset MG and seven for late-onset MG. Further colocalization analyses indicated that CD226, CDC42BPB, PRSS36, and TNFSF12 possess evidence for colocalization with MG or late-onset MG. pQTL MR analyses identified the causal relations of TNFSF12 and CD226 with MG and late-onset MG. Furthermore, PPI analysis has revealed the protein interaction between TNFSF12-TNFSF13(APRIL) and TNFSF12-TNFSF13B(BLyS). Elevated TNFSF13 serum level of MG patients was also identified by ELISA experiments. This study has ultimately proposed three promising therapeutic targets (TNFSF12, TNFSF13, TNFSF13B) of MG. CONCLUSIONS: Three drug targets associated with the BLyS/APRIL pathway have been identified. Multiple biological agents, including telitacicept and belimumab, are promising for MG therapy.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Miastenia Gravis , Sitios de Carácter Cuantitativo , Humanos , Miastenia Gravis/genética , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/patología , Miastenia Gravis/sangre , Sitios de Carácter Cuantitativo/genética , Mapas de Interacción de Proteínas/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética
14.
Immun Inflamm Dis ; 12(4): e1207, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661103

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory disease of the colonic mucosa, with a gradually increasing incidence. Therefore, it is necessary to actively seek targets for the treatment of UC. METHODS: Common differentially expressed genes (DEGs) were screened from two microarray data sets related to UC. Protein-protein interaction network was constructed to find the hub genes. The UC mouse model and cell model were induced by dextran sulfate sodium (DSS). The pathological changes of colon tissue were observed by hematoxylin-eosin staining. Immunohistochemistry and immunofluorescence were performed to detect the expressions of Ki67 and Claudin-1. The performance of mice was observed by disease activity index (DAI). The effect of TOP2A on proliferation, inflammation, oxidative stress, and interleukin-17 (IL-17) signaling pathway in UC model was measured by cell counting kit-8, enzyme-linked immunosorbent assay, and western blot. RESULTS: Through bioinformatics analysis, 295 common DEGs were screened, and the hub gene TOP2A was selected. In UC model, there was obvious inflammatory cell infiltration in the colon and less goblet cells, while si-TOP2A lessened it. More Ki67 positive cells and less Claudin-1 positive cells were observed in UC model mice. Furthermore, knockdown of TOP2A increased the body weight and colon length of UC mice, while the DAI was decreased. Through in vivo and in vitro experiments, knockdown of TOP2A also inhibited inflammation and IL-17 signaling pathway, and promoted proliferation in DSS-induced NCM460 cells. CONCLUSION: Knockdown of TOP2A alleviated the progression of UC by suppressing inflammation and inhibited IL-17 signaling pathway.


Asunto(s)
Colitis Ulcerosa , ADN-Topoisomerasas de Tipo II , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Interleucina-17 , Proteínas de Unión a Poli-ADP-Ribosa , Transducción de Señal , Colitis Ulcerosa/patología , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Animales , Interleucina-17/metabolismo , Interleucina-17/genética , Ratones , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Humanos , Técnicas de Silenciamiento del Gen , Sulfato de Dextran/toxicidad , Mapas de Interacción de Proteínas , Masculino
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 605-616, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597453

RESUMEN

OBJECTIVE: To explore the core genes related to the diagnosis and prognosis of gastric cancer (GC) based on Gene Expression Omnibus (GEO) database and screen the molecular targets involved in the occurrence and development of GC. METHODS: GC microarray data GSE118916, GSE54129 and GSE79973 were downloaded from GEO database, and the differentially expressed genes (DEGs) were screened. Enrichment analysis of the signaling pathways and molecular functions were preformed and protein-protein interaction networks (PPI) were constructed to identify the hub genes, whose expression levels and diagnostic and prognostic values were verifies based on gastric adenocarcinoma data from TCGA. The expression levels of these core genes were also detected in different GC cell lines using qRT- PCR. RESULTS: Seventy-seven DEGs were identified, which encodes proteins located mainly in the extracellular matrix and basement membrane with activities of oxidoreductase and extracellular matrix receptor and ligand, involving the biological processes of digestion and hormone metabolism and the signaling pathways in retinol metabolism and gastric acid secretion. Nine hub genes were obtained, among which SPARC, TIMP1, THBS2, COL6A3 and THY1 were significantly up- regulated and TFF1, GKN1, TFF2 and PGC were significantly down-regulated in GC. The abnormal expressions of SPARC, TIMP1, THBS2, COL6A3, TFF2 and THY1 were significantly correlated with the survival time of GC patients. ROC curve analysis showed that aberrant expression of TIMP1 SPARC, THY1 and THBS2 had high diagnostic value for GC. High expressions of SPARC, TIMP1, THBS2 and COL6A3 were detected in GC tissues. In the GC cell lines, qRT- PCR revealed different expression patterns of these hub genes, but their expressions were largely consistent with those found in bioinformatics analyses. CONCLUSION: SPARC, TIMP1, THBS2 and other DEGs are probably involved in GC occurrence and progression and may serve as potential candidate molecular markers for early diagnosis and prognostic evaluation of GC.


Asunto(s)
Hormonas Peptídicas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Perfilación de la Expresión Génica , Detección Precoz del Cáncer , Mapas de Interacción de Proteínas/genética , Pronóstico , Colágeno , Biología Computacional
16.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 61-66, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650155

RESUMEN

This study aimed to explore the hub genes and related key pathways in Spinal Cord Injury (SCI) based on the bioinformatics analysis. Two microarray datasets (GSE45006, GSE45550) were obtained from the GEO database and were merged and batch-corrected. The differentially expressed genes (DEGs) in SCI were explored with the Limma, and the weighted gene co-expression network analysis (WGCNA) was conducted to explore the module genes. Functional enrichment analysis and Gene set variation analysis (GSVA) were used to investigate the biological functions and key pathways of the key genes related to SCI. Then the protein-protein interaction (PPI) network was generated using the STING online tool, and the hub genes in SCI were identified. Receiver operating characteristic (ROC) curves were applied to assess the diagnostic value of the selected hub genes. We identified 554 DEGs in SCI, and 1236 key genes in SCI were selected via WGCNA. Totally 111 key genes related to SCI were discovered. Furthermore, the functional enrichment analysis showed that these key mRNAs were primarily enriched in the extracellular matrix (ECM)-related pathways and processes associated with wound healing and cell growth. The PPI network further filtered six hub genes (Cd44, Timp1, Loxl1, Col6a1, Col3a1, Col5a1) ranked by the degree, and the diagnostic value of the six hub genes was confirmed by the ROC curves. Six hub genes including Cd44, Timp1, Loxl1, Col6a1, Col3a1, and Col5a1 were identified in SCI, with differential expression and excellent diagnostic value, which might provide insight into the targeted therapy of SCI.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/genética , Biología Computacional/métodos , Mapas de Interacción de Proteínas/genética , Humanos , Perfilación de la Expresión Génica/métodos , Curva ROC , Bases de Datos Genéticas , Transducción de Señal/genética , Regulación de la Expresión Génica
17.
Medicine (Baltimore) ; 103(14): e37512, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579077

RESUMEN

ShenGui capsule (SGC), as a herbal compound, has significant effects on the treatment of heart failure (HF), but its mechanism of action is unclear. In this study, we aimed to explore the potential pharmacological targets and mechanisms of SGC in the treatment of HF using network pharmacology and molecular docking approaches. Potential active ingredients of SGC were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform database and screened by pharmacokinetic parameters. Target genes of HF were identified by comparing the toxicogenomics database, GeneCards, and DisGeNET databases. Protein interaction networks and gene-disorder-target networks were constructed using Cytoscape for visual analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were also performed to identify protein functional annotations and potential target signaling pathways through the DAVID database. CB-DOCK was used for molecular docking to explore the role of IL-1ß with SGC compounds. Sixteen active ingredients in SGC were screened from the traditional Chinese medicine systems pharmacology database and analysis platform, of which 36 target genes intersected with HF target genes. Protein-protein interactions suggested that each target gene was closely related, and interleukin-1ß (IL-1ß) was identified as Hub gene. The network pharmacology analysis suggested that these active ingredients were well correlated with HF. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that target genes were highly enriched in pathways such as inflammation. Molecular docking results showed that IL-1ß binds tightly to SGC active components. This experiment provides an important research basis for the mechanism of action of SGC in the treatment of HF. In this study, the active compounds of SGC were found to bind IL-1ß for the treatment of heart failure.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Insuficiencia Cardíaca/tratamiento farmacológico , Mapas de Interacción de Proteínas , Bases de Datos Factuales , Interleucina-1beta , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
18.
Sci Rep ; 14(1): 9350, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653998

RESUMEN

Cerebral ischemic stroke (CIS) has the characteristics of a high incidence, disability, and mortality rate. Here, we aimed to explore the potential pathogenic mechanisms of ferroptosis-related genes (FRGs) in CIS. Three microarray datasets from the Gene Expression Omnibus (GEO) database were utilized to analyze differentially expressed genes (DEGs) between CIS and normal controls. FRGs were obtained from a literature report and the FerrDb database. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network were used to screen hub genes. The receiver operating characteristic (ROC) curve was adopted to evaluate the diagnostic value of key genes in CIS, followed by analysis of immune microenvironment, transcription factor (TF) regulatory network, drug prediction, and molecular docking. In total, 128 CIS samples were divided into 2 subgroups after clustering analysis. Compared with cluster A, 1560 DEGs were identified in cluster B. After the construction of the WGCNA and PPI network, 5 hub genes, including MAPK3, WAS, DNAJC5, PRKCD, and GRB2, were identified for CIS. Interestingly, MAPK3 was a FRG that differentially expressed between cluster A and cluster B. The expression levels of 5 hub genes were all specifically highly in cluster A subtype. It is noted that neutrophils were the most positively correlated with all 5 real hub genes. PRKCD was one of the target genes of FASUDIL. In conclusion, five real hub genes were identified as potential diagnostic markers, which can distinguish the two subtypes well.


Asunto(s)
Ferroptosis , Redes Reguladoras de Genes , Accidente Cerebrovascular Isquémico , Mapas de Interacción de Proteínas , Ferroptosis/genética , Humanos , Accidente Cerebrovascular Isquémico/genética , Mapas de Interacción de Proteínas/genética , Perfilación de la Expresión Génica , Simulación del Acoplamiento Molecular , Bases de Datos Genéticas
19.
Cancer Rep (Hoboken) ; 7(4): e2032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577722

RESUMEN

BACKGROUND: The diverse and complex attributes of cancer have made it a daunting challenge to overcome globally and remains to endanger human life. Detection of critical cancer-related gene alterations in solid tumor samples better defines patient diagnosis and prognosis, and indicates what targeted therapies must be administered to improve cancer patients' outcome. MATERIALS AND METHODS: To identify genes that have aberrant expression across different cancer types, differential expressed genes were detected within the TCGA datasets. Subsequently, the DEGs common to all pan cancers were determined. Furthermore, various methods were employed to gain genetic alterations, co-expression genes network and protein-protein interaction (PPI) network, pathway enrichment analysis of common genes. Finally, the gene regulatory network was constructed. RESULTS: Intersectional analysis identified UBE2C as a common DEG between all 28 types of studied cancers. Upregulated UBE2C expression was significantly correlated with OS and DFS of 10 and 9 types of cancer patients. Also, UBE2C can be a diagnostic factor in CESC, CHOL, GBM, and UCS with AUC = 100% and diagnose 19 cancer types with AUC ≥90%. A ceRNA network constructed including UBE2C, 41 TFs, 10 shared miRNAs, and 21 circRNAs and 128 lncRNAs. CONCLUSION: In summary, UBE2C can be a theranostic gene, which may serve as a reliable biomarker in diagnosing cancers, improving treatment responses and increasing the overall survival of cancer patients and can be a promising gene to be target by cancer drugs in the future.


Asunto(s)
Biomarcadores , Neoplasias , Enzimas Ubiquitina-Conjugadoras , Humanos , Biomarcadores/metabolismo , Biología Computacional/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Pronóstico , Mapas de Interacción de Proteínas/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
20.
J Coll Physicians Surg Pak ; 34(3): 290-295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462863

RESUMEN

OBJECTIVE: To search for potential biomarkers and available medicines for gastric adenocarcinoma. STUDY DESIGN: Experimental study. Place and Duration of the Study: Scientific Research Section, Shenzhen Longhua District Central Hospital, Shenzhen, China, from January to April 2023. METHODOLOGY: Datasets were retrieved from the Gene Expression Omnibus (GEO). Differential gene expression analysis between gastric adenocarcinoma and normal samples was conducted using GEO2R. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed via the Enrichr website. Protein-protein interaction (PPI) networks were established using the STRING website. The central hub genes were identified using the cytoHubba plugin integrated within Cytoscape. Finally, the GEPIA2 and QuartataWeb websites were employed to validate the expression levels of the hub genes and to identify potential medicines for gastric adenocarcinoma. RESULTS: In total, 133 DEGs were identified. GO analysis revealed that these DEGs predominantly participate in processes such as cell adhesion, positive regulation of cell proliferation, and extracellular matrix organisation. In the KEGG pathways, DEGs were significantly enriched in gastric acid secretion, protein digestion and absorption, and ECM-receptor interaction. Following the construction of the PPI network, 10 central hub genes were identified and validated using GEPIA2. Notably, among these hub genes, SERPINE1 demonstrated a significant association with the prognosis of gastric adenocarcinoma, and potential therapeutic agents were subsequently predicted. CONCLUSION: SERPINE1 and potential therapeutic agents hold promise to enhance personalised diagnosis and treatment for gastric adenocarcinoma patients in the future. KEY WORDS: Biomarkers, Gastric adenocarcinoma, Bioinformatics, Differentially Expressed Genes (DEGs).


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Biomarcadores de Tumor/metabolismo , Mapas de Interacción de Proteínas/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Biología Computacional , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...